
Autonomous Evaluation and Refinement of Web Agents

Jiayi Pan1* Yichi Zhang2 Nicholas Tomlin1 Yifei Zhou1 Sergey Levine1 Alane Suhr1
1UC Berkeley 2University of Michigan

Abstract

We show that domain-general automatic evaluators can
significantly improve the performance of agents for web
navigation and device control. We experiment with multi-
ple evaluation models that trade off between inference cost,
modularity of design, and accuracy. We validate the per-
formance of these models in several popular benchmarks
for digital agents, finding between 74.4 and 92.9% agree-
ment with oracle evaluation metrics. Finally, we use these
evaluators to improve the performance of existing agents
via fine-tuning and inference-time guidance. Without any
additional supervision, we improve state-of-the-art perfor-
mance by 29% on the popular benchmark WebArena, and
achieve a 75% relative improvement in a challenging do-
main transfer scenario. We release our code and data at
https://github.com/Berkeley-NLP/Agent-
Eval-Refine.

1. Introduction
Given an instruction, e.g., “Tell me the cost of my latest
canceled order,” an automated digital agent would be ex-
pected to first navigate to a user’s profile page, then to a list
of their previous orders, identify the most recent order that
has been canceled, and return its total amount to the user.
Such agents offer the long-term potential of making digital
devices more accessible, while also simplifying tedious or
mundane tasks. However, in the short term, even state-of-
the-art agents still make mistakes on simple tasks. Evaluat-
ing such agents and characterizing their failure modes is not
only important for understanding and improving the mod-
els, but also critical for safely deploying them in real world.
In this paper, we demonstrate the opportunities and efficacy
of using automated evaluation models to both characterize
and improve agent performance, without requiring access
to any extra supervision, such as expert demonstrations or
evaluation functions.

We propose to automatically evaluate user instructions
and arbitrary agent trajectories with domain-general neu-
ral models. We explore two main variants of this approach

*Email: jiayipan@berkeley.edu

Figure 1. Method overview: A model-based evaluator provides
evaluation of a digital agent’s trajectory (left). It can be used as
the reward function for Reflexion [29] or filtered behavior cloning
to enhance model performance (right).

(Figure 1, left): first, a modular caption-then-reason ap-
proach where a vision-language model (VLM) first captions
the screenshots, and a language model (LM) is used to rea-
son about if an agent succeeds based on textual information;
and second, an end-to-end approach where we prompt an
advanced VLM like GPT-4V [2] to directly evaluate a tra-
jectory. These two different approaches offer trade-offs in
performance, cost, and transparency.

We first evaluate our proposed approach on its ability to
match oracle evaluation metrics using WebArena [44] and
Android-in-the-Wild [AitW; 27], achieving accuracies up
to 82.1 and 92.9% respectively. We then show how these
evaluation models can be used to refine existing agents
through inference-time guidance or during training, with-
out access to any hand-designed evaluation functions or ad-
ditional demonstration data (Figure 1, right). When inte-
grated as the reward function in Reflexion [29], the evalua-
tor enhances the best-performing GPT-4 WebArena agent’s
success rate by up to 29% of relative improvement. Addi-
tionally, we evaluate in a domain transfer setting to device
control in iOS, for which there is no existing benchmark
environment or training data. When using our evaluation
models to filter sampled trajectories to be used in behavior
cloning, we see relative improvements of 75% accuracy in



this domain.

2. Related Work
Building automated digital agents that map from user in-
structions to executable actions has been a long-standing
goal in the NLP and AI communities [3, 6, 7]. Recent
advances in NLP and multimodal machine learning have
supported the development of more capable agents, and
many recent benchmarks and approaches cover instruction-
conditioned tasks such as web navigation and device con-
trol.

Digital Agents Early modeling of language-conditioned
autonomous agents focused on approaches that include se-
mantic parsing [3, 24, 36], reinforcement learning [6, 7],
and imitation learning [19]. The strength of pretrained lan-
guage and language-and-vision modeling has renewed in-
terest in building language-conditioned digital agents [11,
15, 17, 31, 43, 44]. For example, baseline approaches to
WebArena [44] use few-shot prompting with language-only
models, representing the environment state and action space
with its document object model (DOM). More recent works
in building these agents have moved from language-only
modeling to vision-language modeling, representing the en-
vironment state space as its rendered pixel representation
instead of relying on a DOM. Another line of work has ap-
plied inference-time techniques to improve model’s perfor-
mance, for example with inference-time exploration [41],
intermediate plan revision [42] and error correction [32],
and self-critique [35] on GPT-4 or GPT-4V. Concurrent to
our work, OS-Copilot [35] proposes a self-critique compo-
nent to autonomously refine Mac device control agents, im-
plementing the critic as a LM that reasons about proposed
tool implementations and error messages. In contrast to our
work, this critic does not evaluate actual agent behavior in
the execution environment or used in model training.

Autonomous Refinement and Evaluation Recently,
there has been renewed interest in methods for improving
policies at training [1, 5, 23, 26] or inference [29, 35, 39]
time without human supervision. Approaches like Reflex-
ion [29] assume access to an external evaluation function,
leveraging it as the supervision signal to guide policy im-
provement at inference time. In contrast, we study applica-
tions of inference-time autonomous refinement without re-
quiring access to the external evaluation function, and show
that using our proposed domain-general evaluation models
improves agent success rate by 29%. Meanwhile, meth-
ods which bootstrap policies with supervised training and
refine them with reinforcement learning have been widely
adopted; our proposed evaluators enable this paradigm in
open, realistic digital agent scenarios, providing a relative

improvement in performance of over 70%. Concurrent to
our work, WebVoyager [16] also explores using GPT-4V as
an automated proxy for human evaluation of web agents,
though is not the primary focus of their work, and neither
performs in-depth analysis of the quality of its judgments,
nor explores its applicability to improving agents.

Digital Agent Benchmarks Recently-proposed bench-
marks that study digital agents fall roughly into two cat-
egories: simulation-based benchmark and demonstration-
based one. Simulation-based benchmarks include environ-
ment simulators that offer the ability to execute arbitrary
agent trajectories. Early simulation environments such as
WoB [25, 28], WebShop [38], and others [6] are limited in
their domain coverage, realism, or generalizability of their
evaluation functions. Recently proposed simulation envi-
ronments like AndroidEnv [30], WebArena [44] and Vi-
sualWebArena [22], though far from perfect, have offered
improvement across these dimensions. However, design-
ing simulators, curating tasks, and handcrafting evaluation
functions fundamentally limits their ability to mirror task
and environment diversity of real environments.

In parallel, the community has focused on
demonstration-based benchmarks that do not include
an executable simulation environment, including PIXEL-
HELP [24], MoTIF [8], Mind2Web [11], and AitW [27].
Notably, Mind2Web and AitW contain over 2K and 715K
human trajectories respectively on a wide range of web
navigation and device control tasks. Though primarily used
for model training [11, 17, 27, 43], these datasets are also
used for evaluating digital agents through reference-based
metrics like action matching score. In this setting, an agent
is given the prefix of a human demonstration and evaluated
on its prediction of the next action to take. However,
this metric requires human demonstrations and does not
directly reflect agent’s performance in real-world because it
does not account for consequences of an agent’s sequential
decision process, alternative actions that diverge from the
demonstration.

We propose a third approach in which arbitrary instruc-
tions and agent trajectories are directly evaluated by a
model.

3. Domain-General Evaluators
We develop multiple domain-general automatic evaluators
for digital agents. Given a user instruction x and an ini-
tial environment state s0, an agent generates and executes
a sequence of actions a = ⟨a0, a1, . . . , an⟩, resulting in
a sequence of state visits s = ⟨s0, s1, s2, . . . , sn+1⟩. In
this work, we assume a and x are in text form, such as
<Type:‘‘Hello’’> and “Check the weather”, and each
state s is represented as a screenshot image. Given x,
a, and s as input,the model produces a scalar evaluation



r̄ = ⟨r0, r1, . . . , rn⟩ corresponding to each step of the tra-
jectory:

r = evaluate(x, a, s) .

The evaluator can provide either trajectory-level or per-step
evaluations. For trajectory-level evaluation, r0 = · · · =
rn−1 = 0, with rn = 1 for successful trajectories and rn =
0 otherwise. For per-step evaluation, we classify each step
into three types, ri = 1 indicates task success after action
ai, ri = p ≥ 0 indicates progress toward the goal, and
ri = d < 0 is assigned to actions that do not contribute to
the objective. We query the model once for trajectory-level
evaluation and n times for per-step evaluation, reducing the
model’s task into a binary or ternary classification problem
at each step.

We explore two methods for constructing the model:
1. An end-to-end approach that maps directly from instruc-

tions and screenshots to an evaluation via a pre-trained
VLM.

2. A modular approach which first transcribes the observed
screenshots into text descriptions using a VLM, and then
uses a LM to map the descriptions, actions, and user in-
struction onto an evaluation.

Both methods have tradeoffs: in the first, we can apply ad-
vanced VLMs like GPT-4V. However, this approach is rela-
tively expensive and relies on API calls to proprietary mod-
els. In the second, we can compose open-weight models to
achieve slightly weaker performance, but with added bene-
fits of explainability via modularity and low-cost local de-
ployment.

3.1. End-to-End Approach
We directly provide an instruction-tuned VLM with x, a,
and s. We prompt it to first produce a text-based reason-
ing process [34], then output its evaluation result. In our
experiments, we use the proprietary vision-language model
GPT-4V [2].1

3.2. Modular Caption-then-Reason Approach
Many existing approaches for joint reasoning about lan-
guage and vision disentangle perception and reasoning.
In these approaches, a VLM is first applied to visual in-
put to generate a language-based description; then, a text-
only model (e.g., a LM) takes as input this description
and the user instruction to produce a response by reason-
ing only about linguistic inputs. Existing work applying
this approach has mostly focused on joint reasoning about
natural images and text, e.g., for visual question answer-
ing [14, 33, 40]. We take a similar approach here, where
we first use a VLM to produce a description of the agent’s
observations given as s , then feed these descriptions, along
with actions ā and the user’s instruction x to an LM to pro-
duce a final evaluation.2

1Prompt templates and additional details are provided in Appendix A.1.
2Data collection process, hyper-parameters, and output examples are

detailed in Appendix A.2.

Captioner One drawback to this modular approach is
the potential for information loss, where the image descrip-
tion may not include all the details necessary for task suc-
cess [33]. In our case, this could include missing or misrep-
resenting details about the screenshot, and indeed, we find
that current open-weight VLMs struggle to produce detailed
screenshot descriptions out of the box. In contrast, the most
advanced, yet proprietary, VLMs can produce very detailed
descriptions with adequate prompting.

To improve a captioner’s ability to provide detailed,
well-formatted descriptions, we collect a dataset of screen-
shots paired with descriptions, and use it to fine-tune an
open-weight VLM. We first acquire screenshots from a va-
riety web and device control domains, then use GPT-4V to
provide an initial detailed description for each screenshot.
We manually filter out or fix apparent errors in GPT-4V’s
output, resulting a total of 1,263 data points.3 We use this
data to fine-tune the QWen-VL [4] model. During both fine-
tuning and at inference time, we provide text recognition
results from EasyOCR4 as an additional input to the VLM
to reduce hallucination.

At inference time, we use our finetuned captioner model
to acquire a description for each step in the agent trajectory.
Critically, we do not provide this model access to the origi-
nal user instruction, as we find this exacerbates model hallu-
cinations; e.g., describing webpage attributes which would
be relevant to the task, but are not actually present in the
screenshot.

Reasoner Finally, we provide the actions, generated
descriptions, and the original user instruction to a language-
only instruction-tuned model. We experiment with prompt-
ing two LMs, Mixtral [20] and GPT-4, to produce a text-
based thought and reasoning process as well as the final
evaluation.

4. Experiments and Results
Our goal is to show how domain-general evaluation models
can support the autonomous evaluation and refinement of
digital agents, without requiring access to human demon-
strations or oracle evaluation metrics. To this end, we first
evaluate how these models perform as autonomous evalua-
tors by comparing their judgments to benchmark-provided
metrics and human judgements (Section 4.1). We then il-
lustrate how these evaluation models, while imperfect, can
serve as discriminators in autonomous refinement set-
tings through both inference-time policy refinement [29]
and filtered behavior cloning [filtered BC; 9, 10, 13] to sup-
port significant improvements in agent performance (Sec-
tion 4.2).

Our rationale behind experiment design is to cover a
broad range of domains and challenges. We use WebArena

3Table 3 in Appendix A.2 contains details of data sources and sizes.
4https://github.com/JaidedAI/EasyOCR



for both evaluation and inference-time refinement, as its
built-in evaluation functions facilitate direct comparison.
Android-in-the-Wild (AitW) is chosen for evaluation since
it is widely used for training and evaluating Android agents,
and is typically evaluated using a reference-based metric in-
stead of task success. Lastly, we refine a model through fil-
tered behavior cloning on iOS, where data scarcity poses a
significant challenge to supervised methods.

Environments WebArena [44] is an offline web em-
ulation environment and dataset that supports execution of
arbitrary policies. WebArena comprises 812 human-written
task instructions across various domains, including shop-
ping, maps, and content management systems. Each in-
struction is paired with a handwritten test case that verifies
agent success, e.g., by checking the status of a specific web-
page element against a reference. We refer to this set of test
cases as WebArena’s oracle evaluator.

Android-in-the-Wild [AitW; 27] is a large-scale dataset
for Android device control containing 715,142 human
demonstrations of 30,378 unique instructions. In our exper-
iments, we focus on a subset of 120 tasks randomly sam-
pled from the AitW test set.5 Unlike WebArena, AitW does
not include an emulation environment for agent execution.
Instead, the suggested evaluation metric is based on action
matching: given a sequence of actions representing the pre-
fix of a human demonstration, the agent is evaluated on its
ability to predict the next action in the demonstration. While
we compare against this reference-based metric in our ex-
periments, we focus on end-to-end task-level success rate
and implement an Android emulator to support execution
of arbitrary trajectories.6 We refer to human judgements on
trajectory success as the oracle evaluation.

Despite significant interest in developing digital agents,
progress in the domain of iOS device control has been mod-
est, with the exception of [37], who collect a small unre-
leased dataset of human demonstrations in this domain. We
curate a set of 132 tasks in the iOS domain, taking inspira-
tion from tasks included in AitW. We experiment with using
our proposed evaluation models to facilitate domain trans-
fer, with the goal of applying the strongest model on AitW,
CogAgent [17], to iOS. We develop a Python interface to
the iOS emulator on macOS, and design its action space
to align with the Android-in-the-Wild to facilitate domain
transfer.6

Evaluation Models We evaluate three evaluation
model variants:
• GPT-4V: End-to-end approach (Section 3.1) using GPT-

4V.
• Captioner + Mixtral: Modular approach (Section 3.2) us-

5We subsample from the original test set of 1.4k tasks to facilitate ac-
quiring human judgments of trajectories. See Appendix A.4 for details on
a list of evaluated tasks and details on task sampling.

6Details on our emulators are available in Appendices A.4 and A.6.

ing a finetuned QWen-VL [4] to generate a trajectory de-
scription, and Mixtral [20] to provide the final evaluation.

• Captioner + GPT-4: Modular approach (Section 3.2) us-
ing a finetuned QWen-VL to generate a trajectory descrip-
tion, and GPT-4 to provide the final evaluation.
In most experiments, the evaluation model produces a

trajectory-level evaluation, and takes as input only the last
frame sn+1 in the trajectory, along with the instruction x
and action sequence ā. Preliminary experiments suggested
that model performance does not improve with information
about previous states, likely due to limitations of existing
models in processing long contexts. In the iOS experiments,
the evaluation model takes as input the entire trajectory s̄
and ā and the instruction x, and produces a per-step evalua-
tion.

Agent Policies We experiment with evaluating and refin-
ing the current state-of-the-art digital agents. In WebArena,
this is a GPT-4-based agent described by [44]. For each
task, GPT-4 is provided the user’s instruction and the cur-
rent DOM representation of the webpage derived from its
HTML accessibility tree. GPT-4 is prompted to generate an
action grounded in the DOM, e.g., clicking a button with a
specific element ID. This agent achieves an end-to-end task
success rate of 14.4% using the oracle evaluator.

The strongest agent on the AitW benchmark is CogA-
gent [17], followed by Auto-UI{large, base} [43]. These agents
are implemented as neural vision-language models that map
observations, represented as images, and instructions to
executable actions. We also experiment with the human
demonstrations provided in AitW.7

4.1. Automatic Evaluation

WebArena For each WebArena task and corresponding
trajectory sampled from the GPT-4-based policy [44], we
acquire task-completion judgments for each of the three
evaluation systems described above. Table 1 shows the
overall accuracy of the evaluator’s predictions.8 The end-to-
end approach with GPT-4V achieves 80.6% accuracy, while
Captioner + Mixtral, which uses only open-weight models,
matches the oracle’s evaluations for 74.4% of tasks, and re-
placing Mixtral with GPT-4 achieves the highest accuracy
at 82.1%.

Android-in-the-Wild For the 120 sampled test tasks in
AitW, we evaluate trajectories sampled from four policies:

7The human demonstrations use the original AitW emulator, which was
not released by the authors; thus, these results are not directly comparable
with the automated policies, which use the emulator we implement. How-
ever, the focus of our experiments is not to directly compare policies, but
to compare evaluators across a variety of policies, tasks, and domains.

8Figure 4 in Appendix A.3 includes the confusion matrices of these
predictions.



GPT-4V Captioner + GPT-4 Captioner + Mixtral

WebArena (%) 80.6 82.1 74.4
Android (%) 90.6 89.8 92.9

Table 1. Comparison of evaluators accuracy against oracle evalu-
ator or human judge in WebArena and Android.

AutoUI-base
(67.5%)

AutoUI-large
(70.0%)

CogAgent
(70.7%)

Human Reference
(100%)

Policy Model (Action Matching Score)

0

10

20

30

40

50

60

%
 S

uc
ce

ss
fu

l T
ra

je
ct

or
ie

s

5.0
9.2 7.5 8.3

0.8 1.7 0.8 0.0

14.212.514.2
16.7

64.2

52.5

45.8

55.0

Human
GPT-4V
Captioner + GPT-4
Captioner + Mixtral

Figure 2. Evaluating models in Android-in-the-Wild with different
evaluation methods. We use human judgments of trajectory suc-
cess as oracle reference and compare it with judgments from our
evaluation models and AitW’s standard action matching score.

CogAgent [17], Auto-UI{large, base} [43], and human ex-
perts [27].7 We acquire human judgments of trajectory suc-
cess, as well as judgments from the three evaluation model
variants.9 Figure 2 shows the performance of all four agents
as evaluated by humans and the three evaluator variants.
Below each agent label we also include each policy’s par-
tial action match score [24], which is the standard reported
metric for agents on AitW.10

Unsurprisingly, we find that the human reference trajec-
tories achieve the highest performance as evaluated by all
success metrics. However, our analysis reveals that about
36% of the human demonstrations we annotate are actually
unsuccessful, with common errors including early stopping,
completing the wrong task, and making mistakes with re-
spect to the parameters of the task. The difficulty of col-
lecting high-quality demonstration data at scale further de-
mands automated evaluation methods that can either act as
a quality filter or provide more direct evaluation than action
matching score.

Among the three neural network policies, CogAgent
achieves the highest success rates, followed by Auto-UIbase,
while the performance of Auto-UIlarge is close to zero ac-
cording to all evaluators. When comparing conclusions
that can be drawn from the two styles of metrics – task
success and action matching – there are three clear differ-
ences: first, that success rate lags far behind single-step ac-
tion prediction; second, that relative performance of models
changes depending on the metric used; and third, that using

9Experimental setup details for AitW are provided in Appendix A.4
10Action matching scores are averaged across the subsets of AitW we

sample from, as reported in [17] and [43].

a reference-based metric on erroneous references could re-
sult in inflated impressions of model performance. In partic-
ular, while Auto-UIlarge appears to outperform Auto-UIbase
according to the action matching metric, it is clearly infe-
rior in terms of overall task success rate. Quantitatively, all
three evaluators achieve a Kendall correlation of 100% with
the human judges, while the action matching score only ob-
tains 66.7%. This highlights a fundamental drawback in a
single-step metric like action matching: it does not reflect
error propagation or distribution shift in the sequential pre-
diction process of an arbitrary policy, which can be captured
by whole-trajectory success metrics.

Measuring whole-trajectory success for the complex
tasks that digital agents complete has typically required ei-
ther human evaluation of individual trajectories, or manual
creation of individual test cases, as in WebArena. We an-
alyze the potential for automating this process using our
three proposed evaluators. Table 1 shows the accuracy of
each evaluator variant aggregated over trajectories from all
four policies.8 Overall, we find that our automated metrics
correlate very strongly with human judgment: the Captioner
+ Mixtral variant shows the highest agreement with human
judgment at 92.9% accuracy; replacing Mixtral with GPT-4
leads to a performance drop to 89.8%; and the end-to-end
approach of GPT-4V achieves 90.6% accuracy.

4.2. Autonomous Refinement

Reflexion on WebArena We demonstrate how our pro-
posed evaluation models can serve as a reward signal to
guide an existing web agent at inference time, using the
Reflexion technique [29] as an example. In Reflexion, an
agent first attempts a task, and an external evaluator is used
to judge whether its attempt was successful or not. If it is
judged as unsuccessful, the agent will be prompted to reflect
on the failure and retry. We experiment with improving the
current state-of-the-art GPT-4-based WebArena agent.11

Figure 3 includes the agent’s baseline performance, and
performance using up to three rounds of Reflexion with
the oracle evaluator (which serves as an upper bound) and
our three evaluation systems as external supervision. We
see the improvement our evaluators provide scales favor-
able with evaluator capability, with Captioner + Mixtral im-
proves agent’s relative success rate by 16% and GPT-4V
based evaluator by 29%. All system variants, including
the low-cost and locally-hosted variant Captioner + Mixtral,
significantly enhance agent’s performance while requiring
no access to hand-designed evaluation functions.

Our preliminary study suggests that false negative eval-
uations have a more detrimental impact on agent’s perfor-
mance compared to false positives. If our evaluator predicts
an execution is incorrect, but it was actually successful,
this forces the agent to retry a successful execution, which

11Reflexion prompts are detailed in Appendix A.5.



0 1 2 3
Trial Number

14

16

18

20

22

24

26

28

Su
cc

es
s 

Ra
te

 (
%

)

Baseline success rate w/o Reflexion

21.9%

24.8%
25.9%

18.1%

17.9% 18.1%18.0%

18.6% 19.0%
19.7%

20.4% 20.2%

15.6%

Oracle Evaluator
GPT-4V
Captioner + GPT-4
Captioner + Mixtral

Figure 3. Results of applying Reflexion for up to 3 rounds using
different evaluation systems on the WebArena benchmarks. Here,
the oracle evaluator denotes performance using WebArena’s built-
in evaluation functions as the reward function; this provides an
upper-bound of improvement using Reflexion.

nearly always leads a subsequent failure. In contrast, false
positives only lose out on the opportunity to retry, which
creates an upper bound of performance for the agent, but
does not degrade its performance. Improving the robust-
ness of inference-time algorithms under noisy supervision
is an interesting future direction to explore.

Filtered Behavior Cloning on iOS We demonstrate how
our evaluator can guide the refinement of a policy in low-
resouce domain using filtered behavior cloning (filtered
BC), without additional supervision. We use CogAgent [17]
as the policy model for the experiment. CogAgent is an
18B-parameter VLM specialized in GUI understanding and
navigation. It is primarily instruction-tuned with demon-
strations from web navigation and Android device control,
and incorporates a very limited, manually collected iOS
dataset for training. Given a screenshot and an instruc-
tion, CogAgent first generates a high-level plan, followed
by the low-level action. For data collection and testing pur-
poses, we design 132 common tasks on iOS, with 80 tasks
for training and 52 for testing. Given scaling limitations of
emulation, including low speeds and restriction to emula-
tion on macOS, we only experiment with iOS built-in apps
and with the Captioner + Mixtral evaluator.

We first sample 737 trajectories from CogAgent, con-
ditioned on the 80 training tasks. We use our evaluator to
provide per-step evaluations to these trajectories, then apply
filtered BC for fine-tuning using this data. Unlike standard
fine-tuning, this method filters out data points with rewards
below a specified threshold. We set this threshold at ≥ p;
i.e., we retain only state-action pairs that positively influ-
ence the success of a trajectory (Section 3). Additionally,
we assess CogAgent’s unmodified performance on iOS and
explore a self-training approach by finetuning without data
filtering as baselines for comparison.

Table 2 contains results for the 52 test tasks. iOS de-
vice control is a challenging task, with the baseline agent
completing only 8 out of 52 tasks, yielding a 15% success
rate. Self-training improves over the baseline by 3 tasks.

Policy # Successful Tasks

CogAgent Baseline 8
+ Self-training 11
+ Filtered BC (Ours) 14

Table 2. Comparison of CogAgent and refined policies via self-
training and filtered behavior cloning, including the number of
successful tasks in our test set (out of 52 total tasks).

Filtered BC with our evaluator significantly improved the
policy model’s performance from 8 to 14 successes, mark-
ing a 75% relative improvement.

4.3. Error Analysis

We randomly sample 20 successful and 30 erroneous eval-
uations for each evaluation model in WebArena and manu-
ally annotate the sources of failure.12 We categorize errors
into three primary types, providing percentage estimates
rounded to the nearest 5%.
1. Critical information lost from captions in the modular

approach (10%); errors in screenshot understanding for
the end-to-end GPT-4V approach (5%).

2. Errors in the reasoning process, observed in 50% of
cases for GPT-4V/GPT-4-based methods and 70% for
Mixtral-Captioner.

3. Ambiguities in task specification and success criteria,
observed in 30% of cases for GPT-4V/GPT-4-based
methods and 10% for Mixtral-Captioner.
We note that in our error categorization, a model must

overcome errors in preceding categories to be assessed un-
der the subsequent one. Consequently, Mixtral-Captioner’s
lower rate of Type 3 errors is mostly attributed to its higher
frequency of Type 1 and 2 errors.

Additionally, we find the model provides the correct final
evaluation, but incorrect reasoning, for about 10% of correct
evaluations.

5. Conclusion
In this study, we design automatic methods to both evaluate
and refine the performance of digital agents. We first de-
scribe a model that provides either trajectory-level or per-
step evaluation of agent’s performance. Subsequently, we
propose two approaches to implement the model: an end-
to-end approach using a pre-trained vision-language model,
and a modular caption-then-reason approach using a VLM
and a pre-trained language model together. These methods
offer trade-offs between performance, cost, and modularity.

Using WebArena and Android-in-the-Wild as testbeds,
we first validate the effectiveness of these evaluators against
oracle evaluation metrics, and highlight their advantage

12Refer to Figures 5 through 11 in the Appendix for visual representa-
tions of these evaluations.



over standard reference-based metrics on AitW. We then
show how the evaluators can be used to refine existing
agents through both inference-time guidance and filtered
BC. When integrated as the reward function in Reflexion,
a method for inference-time refinement, our evaluators en-
hance the best-performing agent’s success rate by up to
29%. Additionally, it boosts the performance of a strong
device control policy in a domain transfer task by 75% via
filtered behavior cloning, all without any extra supervision.
Our findings show the potential of model-based automated
evaluators for both evaluating and improving digital agents,
which is especially critical in developing real-world agents
where ground truth evaluation functions or human supervi-
sion are not always available.

Limitations and Future Work
While our research demonstrates the potential of model-
based evaluators in evaluating and improving digital agents,
we also identify several areas for future exploration. First,
current evaluators are still far from perfect, and any en-
hancement in their performance, e..g, from better represen-
tations of the action space or stronger base models, will
likely directly translate to improved outcomes. Second, in
this work, we focused on Reflexion and filtered behavior
cloning. Future works can explore scaling up the experi-
ments and developing better training and inference-time al-
gorithms that are robust and efficient under noisy supervi-
sion. Finally, in this work we only make use of the evalua-
tor’s binary or ternary judgment, and discard the language-
based explanation it generates. Future work can explore
how to leverage this information, for example, to further
enhance policies through language supervision or to pro-
vide scalable oversight of agent behavior.

Ethics Statement
Most currently available digital agents are research artifacts.
As the performance of these agents improve and they are
increasingly deployed in the real world, they may pose se-
curity risks to their users. For example, a web agent with
unconstrained access to a browser might be able to gain
access a user’s passwords, financial information, or social
media messages. Better understanding the potential failure
modes of these models in real-world use cases is critical to
ensuring their safe deployment. We view our work as a first
step in this direction: by developing domain-general evalu-
ators, we hope to facilitate better understanding of models
(and their risks) outside of simulated environments like We-
bArena. At the same time, human evaluation and oversight
of these future systems will also be important for mitigating
potential harms; although our work in this paper focuses on
autonomous evaluation, we hope it will supplement, rather
than supplant, human efforts.

Acknowledgments

We thank the Berkeley NLP group, especially Ruiqi Zhong,
Andre He, Charlie Snell, Catherine Chen, Sanjay Subrama-
nian, and Zineng Tang, as well as Allen Nie for feedback
and discussions and Shuyan Zhou for assistance in setting
up the WebArena experiments. This work was partially sup-
ported by an AI2 Young Investigator Grant. NT is supported
by the DARPA SemaFor program.



References
[1] Marwa Abdulhai, Isadora White, Charles Burton Snell,

Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu, and
Sergey Levine. LMRL Gym: Benchmarks for multi-
turn reinforcement learning with language models. ArXiv,
abs/2311.18232, 2023. 2

[2] OpenAI: Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anad-
kat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie
Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff
Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-
Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai,
Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fo-
tis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Ja-
son Chen, Mark Chen, Benjamin Chess, Chester Cho,
Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah
Currier, Yunxing Dai, Cory Decareaux, Thomas Degry,
Noah Deutsch, Damien Deville, Arka Dhar, David Do-
han, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo
Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogi-
neni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gor-
don, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy,
Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes
Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Pe-
ter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin,
Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer
Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider,
Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick,
Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik
Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Koko-
tajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstan-
tinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patri-
cia Lue, Anna Adeola Makanju, Kim Malfacini, Sam Man-
ning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McK-
inney, Christine McLeavey, Paul McMillan, Jake McNeil,
David Medina, Aalok Mehta, Jacob Menick, Luke Metz, An-
drey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan
Morikawa, Daniel P. Mossing, Tong Mu, Mira Murati, Oleg
Murk, David M’ely, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Ouyang Long, Cullen O’Keefe, Jakub W. Pachocki,
Alex Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alexan-
dre Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-

man, Filipe de Avila Belbute Peres, Michael Petrov, Hen-
rique Pondé de Oliveira Pinto, Michael Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power,
Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford,
Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real,
Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani San-
turkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov,
Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama,
Ian Sohl, Benjamin D. Sokolowsky, Yang Song, Natalie
Staudacher, Felipe Petroski Such, Natalie Summers, Ilya
Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine Thomp-
son, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer’on
Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss,
Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila
Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt
Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich,
Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu,
Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu,
Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Jun-
tang Zhuang, William Zhuk, and Barret Zoph. GPT-4 tech-
nical report. 2023. 1, 3

[3] James Allen, Nathanael Chambers, George Ferguson, Lucian
Galescu, Hyuckchul Jung, Mary Swift, and William Taysom.
PLOW: a collaborative task learning agent. In AAAI, 2007.
2

[4] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-VL: A frontier large vision-language model
with versatile abilities. ArXiv, abs/2308.12966, 2023. 3, 4

[5] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda
Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna
Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol
Chen, Catherine Olsson, Christopher Olah, Danny Her-
nandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey
Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite,
Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas
Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby,
Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timo-
thy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan
Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann,
Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom
Brown, and Jared Kaplan. Constitutional AI: Harmlessness
from AI feedback. ArXiv, abs/2308.12966, 2022. 2

[6] S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina
Barzilay. Reinforcement learning for mapping instructions
to actions. In ACL-AFNLP, 2009. 2

[7] S.R.K. Branavan, Luke Zettlemoyer, and Regina Barzilay.
Reading between the lines: Learning to map high-level in-
structions to commands. In ACL, 2010. 2

[8] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Ku-



mar, Kate Saenko, and Bryan A. Plummer. A dataset for
interactive vision-language navigation with unknown com-
mand feasibility. In ECCV, 2022. 2

[9] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Re-
inforcement learning via sequence modeling. In NeurIPS,
2021. 3

[10] Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu
Wu, and Keith Ross. BAIL: Best-action imitation learning
for batch deep reinforcement learning. In NeurIPS, 2020. 3

[11] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel
Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2Web:
Towards a generalist agent for the web. In NeurIPS Datasets
and Benchmarks Track, 2023. 2, 13

[12] Brad Dwyer. Website screenshots dataset, 2020. 13
[13] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and

Sergey Levine. RvS: What is essential for offline RL via
supervised learning? In ICLR, 2022. 3

[14] Jiaxian Guo, Junnan Li, Dongxu Li, Anthony Meng
Huat Tiong, Boyang Li, Dacheng Tao, and Steven Hoi. From
images to textual prompts: Zero-shot visual question answer-
ing with frozen large language models. In CVPR, 2023. 3

[15] Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa Saf-
dari, Yutaka Matsuo, Douglas Eck, and Aleksandra Faust. A
real-world webagent with planning, long context understand-
ing, and program synthesis. In ICLR, 2024. 2

[16] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong
Dai, Hongming Zhang, Zhenzhong Lan, and Dong Yu. Web-
Voyager: Building an end-to-end web agent with large mul-
timodal models. ArXiv, abs/2401.13919, 2024. 2

[17] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu,
Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxiao
Dong, Ming Ding, and Jie Tang. CogAgent: A visual lan-
guage model for GUI agents. arXiv, abs/2312.08914, 2023.
2, 4, 5, 6

[18] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. In
ICLR, 2022. 12

[19] Peter C. Humphreys, David Raposo, Tobias Pohlen, Gregory
Thornton, Rachita Chhaparia, Alistair Muldal, Josh Abram-
son, Petko Georgiev, Alex Goldin, Adam Santoro, and Tim-
othy P. Lillicrap. A data-driven approach for learning to con-
trol computers. In ICML, 2022. 2

[20] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford, Deven-
dra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna,
Florian Bressand, Gianna Lengyel, Guillaume Bour, Guil-
laume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile
Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. Mixtral of experts. ArXiv,
abs/2401.04088, 2024. 3, 4

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014. 11

[22] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur,
Ming Chong Lim, Po-Yu Huang, Graham Neubig, Shuyan
Zhou, Ruslan Salakhutdinov, and Daniel Fried. VisualWe-
bArena: Evaluating multimodal agents on realistic visual
web tasks. ArXiv, abs/2401.13649, 2024. 2

[23] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop, Ethan
Hall, Victor Carbune, Abhinav Rastogi, and Sushant
Prakash. RLAIF: Scaling reinforcement learning from hu-
man feedback with ai feedback. arXiv, abs/2309.00267,
2023. 2

[24] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. Mapping natural language instructions to mobile
UI action sequences. In ACL, 2020. 2, 5

[25] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and Percy
Liang. Reinforcement learning on web interfaces using
workflow-guided exploration. In ICLR, 2018. 2

[26] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, John Schulman,
Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Francis Christiano,
Jan Leike, and Ryan J. Lowe. Training language mod-
els to follow instructions with human feedback. ArXiv,
abs/2203.02155, 2022. 2

[27] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy P Lillicrap. AndroidInTheWild: A large-
scale dataset for android device control. In NeurIPS Datasets
and Benchmarks Track, 2023. 1, 2, 4, 5, 13

[28] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernan-
dez, and Percy Liang. World of Bits: An open-domain plat-
form for web-based agents. In ICML, 2017. 2

[29] Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: language agents with verbal reinforcement learning. In
NeurIPS, 2023. 1, 2, 3, 5, 11

[30] Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe
Comanici, Amelia Glaese, Zafarali Ahmed, Tyler Jackson,
Shibl Mourad, and Doina Precup. AndroidEnv: A reinforce-
ment learning platform for android. ArXiv, abs/2105.13231,
2021. 2

[31] Bryan Wang, Gang Li, and Yang Li. Enabling conversational
interaction with mobile ui using large language models. In
CHI, 2023. 2

[32] Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou
Shen, Ji Zhang, Fei Huang, and Jitao Sang. Mobile-Agent:
Autonomous multi-modal mobile device agent with visual
perception. arXiv, abs/2401.16158, 2024. 2

[33] Ziyue Wang, Chi Chen, Peng Li, and Yang Liu. Filling the
image information gap for VQA: Prompting large language
models to proactively ask questions. 2023. 3

[34] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large lan-
guage models. NeurIPS, 2022. 3

[35] Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and Lingpeng



Kong. OS-Copilot: Towards generalist computer agents with
self-improvement. arXiv, abs/2402.07456, 2024. 2

[36] Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna,
Larry Heck, James Landay, and Monica Lam. Grounding
open-domain instructions to automate web support tasks. In
NAACL-HLT, 2021. 2

[37] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Qinghong
Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, Zicheng Liu, and Lijuan
Wang. GPT-4V in Wonderland: Large multimodal mod-
els for zero-shot smartphone GUI navigation. ArXiv,
abs/2311.07562, 2023. 4, 13

[38] Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. WebShop: Towards scalable real-world web in-
teraction with grounded language agents. In NeurIPS, 2022.
2

[39] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R. Narasimhan.
Tree of thoughts: Deliberate problem solving with large lan-
guage models. In NeurIPS, 2023. 2

[40] Haoxuan You, Rui Sun, Zhecan Wang, Long Chen, Gengyu
Wang, Hammad Ayyubi, Kai-Wei Chang, and Shih-Fu
Chang. IdealGPT: Iteratively decomposing vision and lan-
guage reasoning via large language models. In Findings
of the Association for Computational Linguistics: EMNLP,
2023. 3

[41] Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin
Chen, Zebiao Huang, Bin Fu, and Gang Yu. AppAgent: Mul-
timodal agents as smartphone users. arXiv, abs/2312.13771,
2023. 2

[42] Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao,
Si Qin, Minghua Ma, Yu Kang, Qingwei Lin, Saravan Ra-
jmohan, et al. UFO: A UI-focused agent for Windows OS
interaction. arXiv, abs/2402.07939, 2024. 2

[43] Zhuosheng Zhang and Aston Zhang. You only look
at screens: Multimodal chain-of-action agents. ArXiv,
abs/2309.11436, 2023. 2, 4, 5

[44] Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert
Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan
Bisk, Daniel Fried, Uri Alon, and Graham Neubig. We-
bArena: A realistic web environment for building au-
tonomous agents. In ICLR, 2024. 1, 2, 4


