
Transformers meet Neural Algorithmic Reasoners

Wilfried Bounsi
Google DeepMind
wilcoln@google.com

Borja Ibarz
Google DeepMind
bibarz@google.com

Andrew Dudzik
Google DeepMind
adudzik@google.com

Jessica B. Hamrick
Google DeepMind

jhamrick@google.com

Larisa Markeeva
Google DeepMind

lmarkeeva@google.com

Alex Vitvitskyi
Google DeepMind
avlife@google.com

Razvan Pascanu
Google DeepMind
razp@google.com

Petar Veličković
Google DeepMind
petarv@google.com

Abstract

Transformers have revolutionized machine learning with
their simple yet effective architecture. Pre-training Trans-
formers on massive text datasets from the Internet has led
to unmatched generalization for natural language under-
standing (NLU) tasks. However, such language models re-
main fragile when tasked with algorithmic forms of reason-
ing, where computations must be precise and robust. To
address this limitation, we propose a novel approach that
combines the Transformer’s language understanding with
the robustness of graph neural network (GNN)-based neu-
ral algorithmic reasoners (NARs). Such NARs proved effec-
tive as generic solvers for algorithmic tasks, when specified
in graph form. To make their embeddings accessible to a
Transformer, we propose a hybrid architecture with a two-
phase training procedure, allowing the tokens in the lan-
guage model to cross-attend to the node embeddings from
the NAR. We evaluate our resulting TransNAR model on the
text-based version of the CLRS-30 benchmark, demonstrat-
ing significant gains over Transformer-only models for al-
gorithmic reasoning, both in and out of distribution.

1. Introduction
Recent work motivated [8] and showcased [6, 14] the effec-
tiveness of graph neural networks [30, GNNs] at robustly
solving algorithmic tasks of various input sizes, both in and
out of distribution—such systems are often referred to as
neural algorithmic reasoners [33, NARs]. Provided appro-
priate inductive biases are used, NARs are capable of hold-
ing perfect generalisation even on 6× larger inputs than
ones seen in the training set, for highly complex algorith-
mic tasks with long rollouts [16]. NARs are, however, still
relatively narrow forms of AI, as they require rigidly struc-
tured formatting of inputs, and they hence cannot be directly
applied to problems posed in more noisy forms—such as

Figure 1. Our TransNAR architecture, with its direct synergy
of Transformers and Neural Algorithmic Reasoners, yields clear
improvements in out-of-distribution reasoning across wide cate-
gories of algorithmic tasks in a textual version of the CLRS-30
benchmark [34]. Here, the x-axis indicates one of the eight al-
gorithmic families of CLRS-30, and the y-axis spans the average
execution accuracy across a dataset of out-of-distribution exam-
ples. TransNAR enables emerging capabilities in the particular
out-of-distribution regime depicted here, with over 20% absolute
improvement in several of the algorithm classes.

in natural language—even when the underlying problem is
still algorithmic in nature.

Conversely, the current undisputed state-of-the-art ap-
proach for modelling noisy text data are Transformer-based
[29] language models [2, 5]. In spite of their unrivalled nat-
ural language understanding properties, they are also notori-
ously brittle when faced with even the simplest algorithmic
tasks [9]—especially if out-of-distribution generalisation is
required [4].

It appears that uniting Transformers with NARs can lead
to fruitful returns on both sides. In this paper, we explore
this interface for the first time, building the TransNAR
model.

Contributions Our exploration proved fruitful. The key
takeaways we present in this work are as follows:



Figure 2. Augmenting LLMs with algorithmic reasoning: a bird’s eye view of TransNAR. A large language model (LLM) consumes
input tokens and produces output tokens, as common for a unimodal Transformer. The neural algorithmic reasoner (NAR) module is a
graph neural network (GNN) pre-trained to execute various algorithmic computation on a collection of graph-based inputs [14]—the pre-
training pipeline is denoted by faded arrows. Throughout its forward pass, the Transformer may access the embeddings computed by the
NAR, by leveraging cross-attention (trained by learnable “glue” weights).

1. We propose a hybrid architecture combining the lan-
guage understanding of a Transformer with the robust-
ness of reasoning of a pre-trained GNN-based NAR. The
Transformer uses the NAR as a high-dimensional tool
that will modulate its tokens embeddings.

2. We show, through an evaluation on a textual version
of the CLRS-30 benchmark [34], that such a NAR-
augmented large language model (LLM) exhibits im-
proved and more robust reasoning capabilities out-of-
distribution (Figure 1).
Our work presents one of the most comprehensive size

generalisation challenges given to Transformers to date, and
the introduction of NARs moves the needle significantly.

2. Related work
Our work sits at the intersection of several areas: neu-
ral algorithmic reasoning, length generalisation in language
models, tool use, and multimodality. Here, we briefly sur-
vey various relevant works in each area. Due to the diversity
of perspectives, to preserve brevity, we do not offer a com-
prehensive review of related work, but rather aim to provide
an indication of specific works that inspired ours the most.

Neural algorithmic reasoning NAR is, in general terms,
the art of building neural networks that are capable of cap-
turing algorithmic computation. Such capabilities can be

amplified by careful choices in algorithmic alignment [37],
step-wise training [31] or contrastive objectives [6].

Recently, it was demonstrated that: (1) it is possi-
ble to learn an NAR capable of executing multiple algo-
rithms simultaneously in its latent space [36]—with the
Triplet-GMPNN [14] skillfully doing so for a collection
of thirty algorithms across the CLRS benchmark [34]; (2)
Once trained, such NARs can be usefully deployed in var-
ious downstream tasks: reinforcement learning [7, 12],
self-supervised learning [32], combinatorial optimisation
[10, 22], computational biology [11] and neuroscience [20].

Our work’s use of NAR is mostly motivated by two of
the works listed before: we use a relatively small, pre-
trained, multi-task NAR [14], and deploy it in a far more
scaled environment: as shown by Numeroso et al. [20],
NAR should in principle be scalable to systems that are
orders-of-magnitude greater than the NAR’s training distri-
bution (180, 000× in that particular case).

Length generalisation in LLMs While NARs can often
strongly generalise to far greater test inputs [16], LLMs
have seen significantly less success in such scenarios. We
attribute this to their autoregressive, causally-masked objec-
tive, which may not always correspond to the most logical
order in which outputs of algorithms should be predicted.
Just as a simple example, performance of various LLMs on



g
(t)
u

g
(t)
a

g
(t)
b

g
(t)
c

g
(t)
d

g
(t)
e

t
(t)
5

t
(t)
4

t
(t)
3

t
(t)
2

t
(t)
1

Transformer
(Equation 1 )

NAR
(Equation 2 )

g
(t+1)
u

g
(t+1)
a

g
(t+1)
b

g
(t+1)
c

g
(t+1)
d

g
(t+1)
e

θ
(t)
5

θ
(t)
4

θ
(t)
3

θ
(t)
2

θ
(t)
1

Cross-Attention
(Equation 3 )

t
(t+1)
3

t
(t+1)
2

t
(t+1)
1

t
(t+1)
4

t
(t+1)
5

Figure 3. TransNAR hybrid architecture. Similar to Alayrac et al. [3], we interleave existing Transformer layers with gated cross-
attention layers which enable information to flow from the NAR to the Transformer. We generate queries from tokens while we obtain keys
and values from nodes and edges of the graph. The node and edge embeddings are obtained by running the NAR on the graph version of
the reasoning task to be solved. When experimenting with pre-trained Transformers, we initially close the cross-attention gate, in order to
fully preserve the language model’s internal knowledge at the beginning of training.

multiplication can be significantly improved by predicting
the result in reverse order [19]. Of course, on more compli-
cated algorithms, it may be much harder to determine the
best way to permute the input, and it may not be the most
human-readable.

Knowledge of the above issues has led to a significant
amount of effort being invested in building Transformers
that can generalise in length. While length generalisation
is not the only kind of distribution shift of interest to OOD
reasoning, it is among the most easy such shifts to simulate.
Accordingly, various works have attempted to induce length
generalisation in LLMs, through the use of careful prompt-
ing [27, 38], randomised positional encoding [25], curricula
[1] or scratchpads [4]. We firmly believe that an impor-
tant trait of reasoning is robustness with respect to prompt
quality—so long as the prompt unambiguously specifies the
problem—and hence deliberately do not explore prompt
modification approaches here; only randomised positions
[25] are leveraged out of the works above in our model.

Tool use and multimodality Another way to obtain ro-
bust generalisation performance is to leverage a hard-coded
algorithm (also known as a tool) by teaching an LLM to in-
voke its API [26]. Arguably, most of the major successes
of reasoning with LLMs [18, 24, 28] can primarily be at-
tributed to an LLM’s clever usage of a tool rather than the
LLM itself, as a tool will by definition not have issues in
generalising to diverse inputs.

Since our aim is to directly evaluate reasoning capabil-
ities of LLMs, we explicitly do not permit tool use in our
baselines. That being said, we envision the pre-trained NAR

as a modulator for the Transformer’s embeddings which is
more robust to OOD noise. Hence, we may observe the
NAR as an “internal tool”: rather than using raw tokens,
the Transformer and NAR can communicate using their em-
beddings, breaking the associated algorithmic bottlenecks
[7, 21].

How to actually realise this communication and embed-
ding exchange? For this, we turn to multimodal LLMs [15]
for inspiration, since we need to integrate signals coming
from two different representations of algorithmic problems
(text and graph). Specifically, our exchange operator is di-
rectly inspired by vision language models (VLMs) and the
cross-attention operator used in Flamingo [3], which of-
fered a principled way of fusing information from text and
image modalities.

3. TransNAR: Augmenting Transformers with
a pre-trained GNN-based NAR

This section describes our hybrid TransNAR architecture
(refer to Figure 3). TransNAR accepts a dual input con-
sisting of a textual algorithmic problem specification (of T
tokens) and its corresponding CLRS-30-specific graph rep-
resentation (of N nodes) and outputs a textual response to
the problem. We can assume that, once encoded, the textual
input is stored in T ∈ RT×k, and the graph input is stored
in G ∈ RN×l. Note that, for simplifying the equations to
follow, we make an assumption that all of the information
relevant to the graph version of the problem is stored in the
nodes—which is often not true in CLRS-30 (there may be
edge- and graph-level inputs as well) but it doesn’t change
the underlying dataflow presented below.



The forward pass of TransNAR unfolds as follows. First,
we properly initialise the inputs by setting T(0) = T and
G(0) = G. Next, to compute the representation of a step
(t+1), the text (token) representations are fed to the current
layer of the Transformer [29]:

Θ(t+1) = FFN

(
softmax

(
(T(t)Qt)

⊤T(t)Kt√
dk

)
T(t)Vt

)
(1)

where Qt,Kt ∈ Rk×dk ,Vt ∈ Rk×k are the key, query
and value transformations, respectively, and FFN is a feed-
forward network. In a similar manner, the graph representa-
tions are fed to the NAR layer, implementing e.g. a standard
max-MPNN [31]:

g(t+1)
u = ϕ

(
g(t)
u , max

1≤v≤N
ψ
(
g(t)
u ,g(t)

v

))
(2)

where ψ, ϕ : Rk × Rk → Rk are learnable message and
update functions, respectively, and max is the elementwise-
max aggregation. Note that Equation 2 only provides pair-
wise interactions between nodes for brevity—in reality, our
NAR is a Triplet-GMPNN [14], which also contains triplet
interactions and a gating mechanism. Further, note that
there is no timestep index on the learnable parts of the
NAR—at each step, a shared function is applied. This
aligns well with the iterative, repeated nature of algorithmic
computation on graphs.

Once both streams have prepared their representations,
Θ(t+1) and G(t+1), the node embeddings in the graph con-
dition the Transformer’s token embeddings to produce the
final outcome of the TransNAR block in the Transformer
stream, inspired by Flamingo [3]:

T(t+1) = FFN

(
softmax

(
(Θ(t)Q×

t )
⊤G(t)K×

t√
dk

)
G(t)V×

t

)
(3)

where Q×
t ,K

×
t ∈ Rk×dk ,V×

t ∈ Rk×k are the key, query
and value transformations of the cross-attention, respec-
tively. No additional transformations are performed on
G(t+1) before concluding this layer.

This process repeats until the final, Nl-th layer, when the
final text output is read out from T(Nl). The final output is
converted into token logits by a prediction head produced by
the final layer, which we supervise by means of a standard
next-token prediction objective.

Prior to the start of TransNAR fine-tuning, we pre-train
the NAR to robustly execute the thirty algorithms spanned
by CLRS-30 [34], in a manner similar to Ibarz et al. [14].
Such procedures are known to yield out-of-distribution gen-
eralisation at up-to-4× larger inputs in graph space. The pa-
rameters of the NAR are generally kept frozen during fine-
tuning, as additional gradients would eliminate the model’s
original robustness properties. This is also, similarly, the

reason why no cross-attention is performed by the graph
embeddings. The LLM itself may be pre-trained over large-
scale datasets [13], to establish its general language priors,
though we recover the same experimental findings even if
the LM is randomly initialised at the onset.

4. Experiments
In our experimentation, we will demonstrate that the recipe
offered by TransNAR admits significant benefits to out-of-
distribution reasoning in language model architectures. In
this section we provide details of our experimental setup.

Transformer architecture and initialisation. We use a
decoder-only, 6 layers, transformer model from the Chin-
chilla family [13] pretrained on MassiveText [23]. In par-
ticular we use a model of 70 million parameters with a con-
text size 2, 048. To showcase the suitability of our approach
regardless of the starting point of training, we run two ab-
lative variants. In the first, the Transformer weights are ini-
tialised with the outcome of the pre-training—emulating a
fine-tuning scenario—and in the second, we use a fully ran-
dom initialisation. In our figures and tables of results that
follow, we will refer to these two setups as “Pretrained”
and “Untrained”.

Randomized positional encoding. Previous work has
emphasised the significant relevance of randomised posi-
tional embeddings in Transformers, especially for enabling
more robust reasoning [25]. Corresponding to previous
studies on the generalization capabilities of language mod-
els, randomised positional embeddings have indeed led to
significant gains on both our baselines and TransNAR, al-
lowing more interesting reasoning behaviour to emerge in
both. As such, all our experiments in this paper will use
randomised positional embeddings. We provide more de-
tails in Appendix 6.

Pre-training the NAR. Following Ibarz et al. [14], we
pre-train a multi-task MPNN-based NAR on input problem
sizes of up to 16, from the CLRS-30 benchmark [34]. Ow-
ing to its graph structure formulation, such NARs are capa-
ble of significant OOD generalisation—sometimes staying
competitive on graphs that are 4× the size. We will attempt
to utilise such models through TransNAR, to convey this
rich representational knowledge into text.

Combining cross-attention contributions from nodes
and edges. The NAR pre-trained by the method presented
in Ibarz et al. [14] produces both node and edge latent repre-
sentations, and we cross-attend to both of them, as they may
contain complementary useful information. To cross-attend
over the edge features, E(t) ∈ RN×N×k, we apply Equation
3 one more time (with Θ(t) cross-attending over E(t)), with
the caveat that we need to flatten the first and second axis
of E into one, to make sure the dimensionalities match. We
combine the cross-attention contribution from the node and
edge embeddings provided by the pre-trained NAR by con-



Algorithm Input & Target #tokens

Articulation points articulation points: 63
A: [[0 0 0 0], [0 1 0 0], [0 0 0 0], [0 0 0 1]]
is cut: [0 0 0 0]

Binary search binary search: 49
key: [0.011 0.029 0.635 0.719], target: 0.122
return: 2

Insertion sort insertion sort: 65
key: [0.561 0.081 0.892 0.565]
pred: [0.081 0.561 0.565 0.892]

Jarvis’ march jarvis march: 75
x: [-1.22 -1.05 0.331 -1.55], y: [-1.48 1.39 0.899 0.1]
in hull: [1 1 1 1]

KMP Matcher kmp matcher: 37
string: [0 0 0 1], key: [3 3 2 3]
match: 0

Matrix Chain Order matrix chain order: 77
p: [0.461 0.957 0.462 0.42]
s: [[0 0 0 0], [0 0 1 2], [0 0 0 2], [0 0 0 0]]

Task Scheduling task scheduling: 61
d: [2 3 3 4], w: [0.042 0.875 0.954 0.761]
selected: [0 1 1 1]

Table 1. Samples from CLRS-text for various algorithmic tasks of problem size 4. Input and target parts of the examples are clearly
specified. Note that variability is limited at size 4, meaning that some algorithms may have trivial answers for the given inputs. Such effects
tend to quickly disappear with scaling the problem size.

catenation, followed by the application of a linear layer. We
have attempted to use other reduction schemes such as sum-
ming the vectors, or applying a 2-layer MLP. We have also
attempted different preprocessing schemes such as orthogo-
nalising the contributions using the Gram-Schmidt process
to ensure their algebraic complementarity before combin-
ing them. However, none of these variations have brought
improvements over our original approach.

Datasets. We build a text version of the CLRS-30 bench-
mark [34], which we call CLRS-text, that is suitable for
training and evaluating language models. Table 1 show-
cases several samples from this dataset, along with their
input size and number of tokens. Note that the textual repre-
sentation is directly derived from the graph-based CLRS-30
in a deterministic manner, so the two datasets convey ex-
actly the same information. However, due to the tokenised
representation, there are stringent limitations on how large
of a problem size we can evaluate on without running out of
context length for the Chinchilla models.

Accordingly, we train our algorithms on smaller prob-
lem sizes—[4, 8] and 12, and evaluate on problem sizes 10
(out-of-distribution—interpolation), 12 (in-distribution), 14
(out-of-distribution—extrapolation).

It is worth noting that CLRS-text is among the most chal-

lenging long-range reasoning tasks for language models,
compared to the present evaluation landscape—a clear step-
up in complexity from grade school math, mainly because
it allows for explicitly controlling for out-of-distribution
generalisation. Yet, there exists a clear polynomial-time-
algorithmic description for each of them, meaning that they
can be explained in relatively little parameters—certainly
way less than a typical large language model of today!

The dataset comprises 10, 000 samples per algorithm per
input size, making up a total of 2, 400, 000 data points, split
as per above into 70% for training and 30% for validation.

Training details. We train all models over seven epochs
of the training data with a batch size of 256 and employ an
Adam optimizer [17] with a learning rate of 10−4. We ap-
ply randomized positional encoding with a maximal length
of 8, 192 on top of Rotary Positional Encoding (RoPE) used
in the base Chinchilla transformer [13]. As previously men-
tioned, for all TransNAR models, we keep the NAR frozen
during training.

Evaluation metrics. We refrain from computing the ac-
curacy of each model using exact string matching, on the
grounds that this metric does not provide insights as to the
causes of failure on a particular datapoint, and more crit-



Figure 4. TransNAR significantly outperforms the baseline Transformer. We compare TransNAR to its corresponding Transformer
baseline on various algorithms and for various input sizes: 12 is the largest size in-distribution. The other two sizes tested—10 and 14—are
out-of-distribution, with the former testing interpolation and the latter extrapolation. Note that in-distribution generalisation is much easier
for Transformers, and as such, we have modified the y-axis for this setting only to the [0.7, 1.0] range. It is evident that, on most algorithmic
tasks of interest, the TransNAR is capable of outperforming its baseline Transformer. Additionally, we see that this advantage is consistent
across both training regimes: initial training and finetuning. The metric used is the CLRS score. Each model was trained with 4 random
seeds. Error bars indicate ±1 standard deviation.

ically, it fails to capture how close to correctness a given
model output is (as observed by Veličković et al. [34]). In-
stead, we evaluate the performance of each model according
to three metrics measuring capabilities of increasing com-
plexity over the generated text:

1. The shape score: a binary-valued metric capturing
whether the output has the right shape. For example,
if we consider a sorting task, the output should have ex-
actly the same number of elements as the input. Sim-
ilarly, if the output is a matrix, we ensure its shape is
consistent with both the input and the task.

2. The parse score: a binary-valued metric capturing
whether the output is free from any illicit characters,
for example, considering again a sorting task on a list
of numbers, the output shouldn’t contain any letters of

the alphabet.
3. The CLRS score: The percentage of elements in the out-

put that match the ground truth answer. This score is
the one traditionally used in CLRS-30 [14, 34], hence its
name. Note that we automatically assign a CLRS score
of 0 if the shape score is 0, as there is no clear correspon-
dence between output indices.

These multi-faceted scores are explicitly designed to cap-
ture the various failure modes of LLMs when learning to
reason over text inputs: they may overly specialise to the
training problem sizes (leading to incorrect shapes at test
time), fail to cope with unseen number combinations (lead-
ing to incorrect parsing), and of course, produce incorrect
or inconsistent outputs, captured by the CLRS score.



Figure 5. Shape Score: The TransNAR significantly outperforms its baseline in terms of producing correct shapes. This score sheds light
on an obvious failure model of regular Transformers out-of-distribution: they fail to capture the seemingly trivial dependency between
input size and output size, and so irrespective of the complexity of the algorithm itself. The TransNAR model manages to considerably
alleviate this problem (with many emerging gains), albeit, these gains do not always lead to perfect scores, implying a fruitful direciton for
future research.

4.1. Results

We summarize our findings in Figure 4 (for CLRS score).
Our results show that our TransNAR significantly outper-
forms the baseline Transformer overall, and on most indi-
vidual algorithms, both in- and out-of-distribution. In par-
ticular, we see that our approach not only enhances exist-
ing out-of-distribution generalisation capabilities, but also
causes the emergence of these capabilities when there was
a complete lack thereof—reflected in the figure by zero or
near-zero performance of the baseline [35].

The analysis of shape score (Figure 5) provides an ad-
ditional way to shed light on why TransNAR performed as
well as it did. Recall, first, that CLRS score is necessarily
zero if shapes do not match. Observing the shape scores
achieved, it appears that grounding Transformer outputs in
NAR embeddings significantly increases the proportion of
inputs for which a Transformer will produce an output of

the correct shape—indicating that this is one very specific
failure mode that TransNAR helps alleviate.

We note, however, that there remain a few algorithms
for which TransNAR is not able to outperform the base-
line. A closer look at the results indicates that such tasks
(Binary Search, Find Maximum Subarray, Minimum, and
Quickselect) all involve an element of searching for a par-
ticular index in an input list. This hints at a unified fail-
ure mode: as these failures persist both when interpolating
and extrapolating, the model as implemented is not able to
generalise to novel index boundaries unseen in the training
data. We therefore suspect that the use of index hints—
as already demonstrated by Zhou et al. [39]—is a promis-
ing avenue for ameliorating this behaviour. Alternatively,
it might be the case that the final NAR-computed hidden
states are harder to decode by the cross-attention layers
in a generalisable way, and therefore might require either



giving an additional capacity to the cross-attention and/or
performing a more progressive decoding in that: instead
of having all cross-attention layers decoding from the final
NAR-computed hidden states, s, we could have early cross-
attention layers decode from hidden states coming from ear-
lier message passing steps, and later cross-attention layers
decode from the later message passing steps.

Lastly, we provide parse scores in Appendix 7—omitting
them from the main text because, in most cases, parsing can
be done at full accuracy.

4.2. Limitations

While our approach demonstrates favourable average per-
formance under all out-of-distribution regimes we have
evaluated, we highlight that TransNAR requires access to
both textual and graph-representation inputs to be effi-
ciently trainable and usable. While this limits TransNAR
to cases where a particular ground-truth executor or simu-
lator (or prior belief about one) is available, now that we
know that TransNAR-like ideas are beneficial, future re-
search can enable the deployment of such ideas into purely
unimodal Transformers. For example, lifting the need for
a second data stream can be done by distilling the knowl-
edge acquired by the trained TransNAR model into a vanilla
Transformer model.

5. Conclusions

We presented a Transformer-NAR hybrid architecture: a
language model that combines the language understanding
skills of a Transformer with the robust algorithmic reason-
ing capabilities of a pre-trained graph neural network-based
neural algorithmic reasoner, to solve algorithmic tasks spec-
ified in natural language. We have demonstrated the superi-
ority of our model over its Transformer-only counterpart on
the CLRS-text benchmark, in the in-distribution, and more
importantly, in two out-of-distribution regimes, with respect
to the input problem size. We hope that future work will
draw on our results and insights shared here, and further in-
vestigate expansions of interest, notably, datasets with more
ambiguous problem specifications (as often encountered in
the real world), and for which their corresponding equiva-
lent solver-ready symbolic inputs are not given in advance.

References
[1] Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk.

Generalization on the unseen, logic reasoning and degree
curriculum. arXiv preprint arXiv:2301.13105, 2023. 3

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-
mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023. 1

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
Mensch, Katie Millican, Malcolm Reynolds, Roman Ring,
Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong,
Sina Samangooei, Marianne Monteiro, Jacob Menick, Se-
bastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sa-
hand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira,
Oriol Vinyals, Andrew Zisserman, and Karen Simonyan.
Flamingo: a visual language model for few-shot learning,
2022. 3, 4

[4] Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor
Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
Exploring length generalization in large language models.
Advances in Neural Information Processing Systems, 35:
38546–38556, 2022. 1, 3

[5] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M Dai, Anja Hauth, et al. Gemini: a fam-
ily of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023. 1

[6] Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana
Bica, Michela Paganini, Charles Blundell, Jovana Mitrovic,
and Petar Veličković. Neural algorithmic reasoning with
causal regularisation. In International Conference on Ma-
chine Learning, 2023. 1, 2

[7] Andreea-Ioana Deac, Petar Veličković, Ognjen Milinkovic,
Pierre-Luc Bacon, Jian Tang, and Mladen Nikolic. Neural al-
gorithmic reasoners are implicit planners. Advances in Neu-
ral Information Processing Systems, 34:15529–15542, 2021.
2, 3

[8] Andrew Dudzik and Petar Veličković. Graph neural net-
works are dynamic programmers. ArXiv, abs/2203.15544,
2022. 1

[9] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li,
Liwei Jian, Bill Yuchen Lin, Peter West, Chandra Bhagavat-
ula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate:
Limits of transformers on compositionality. arXiv preprint
arXiv:2305.18654, 2023. 1

[10] Dobrik Georgiev, Danilo Numeroso, Davide Bacciu, and
Pietro Liò. Neural algorithmic reasoning for combinatorial
optimisation. arXiv preprint arXiv:2306.06064, 2023. 2

[11] Dobrik Georgiev, Ramon Vinas, Sam Considine, Bianca Du-
mitrascu, and Pietro Lio. Narti: Neural algorithmic reason-
ing for trajectory inference. 2023. 2

[12] Yu He, Petar Veličković, Pietro Liò, and Andreea Deac. Con-
tinuous neural algorithmic planners. In Learning on Graphs
Conference, pages 54–1. PMLR, 2022. 2

[13] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de
Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, Tom Hennigan, Eric Noland, Katie Millican, George
van den Driessche, Bogdan Damoc, Aurelia Guy, Simon
Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol
Vinyals, and L. Sifre. Training compute-optimal large lan-
guage models. ArXiv, abs/2203.15556, 2022. 4, 5

[14] Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyria-
cos Nikiforou, Mehdi Abbana Bennani, R. Csordás, An-



drew Dudzik, Matko Bovsnjak, Alex Vitvitskyi, Yulia
Rubanova, Andreea Deac, Beatrice Bevilacqua, Yaroslav
Ganin, Charles Blundell, and Petar Veličković. A general-
ist neural algorithmic learner. In LOG IN, 2022. 1, 2, 4,
6

[15] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac,
Carl Doersch, Catalin Ionescu, David Ding, Skanda Kop-
pula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al.
Perceiver io: A general architecture for structured inputs &
outputs. arXiv preprint arXiv:2107.14795, 2021. 3

[16] Jonas Jürß, Dulhan Hansaja Jayalath, and Petar Veličković.
Recursive algorithmic reasoning. In The Second Learning on
Graphs Conference, 2023. 1, 2

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 5

[18] Rémi Leblond et al. AlphaCode 2 Technical Report. 2023. 3
[19] Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook

Lee, and Dimitris Papailiopoulos. Teaching arithmetic to
small transformers. arXiv preprint arXiv:2307.03381, 2023.
3

[20] Danilo Numeroso, Davide Bacciu, and Petar
Veličković. Dual algorithmic reasoning. arXiv preprint
arXiv:2302.04496, 2023. 2

[21] Euan Ong. Probing the foundations of neural algorithmic
reasoning. Technical report, University of Cambridge, Com-
puter Laboratory, 2023. 3

[22] Chendi Qian, Didier Chételat, and Christopher Morris. Ex-
ploring the power of graph neural networks in solving linear
optimization problems. arXiv preprint arXiv:2310.10603,
2023. 2

[23] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Milli-
can, Jordan Hoffmann, Francis Song, John Aslanides, Sarah
Henderson, Roman Ring, Susannah Young, Eliza Ruther-
ford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard
Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes
Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Ue-
sato, John Mellor, Irina Higgins, Antonia Creswell, Nat
McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar,
Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens,
Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh,
Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli,
Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pa-
jarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cy-
prien de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir
Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew John-
son, Blake Hechtman, Laura Weidinger, Iason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell,
Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway,
Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods,
analysis & insights from training gopher, 2022. 4

[24] Bernardino Romera-Paredes, Mohammadamin Barekatain,
Alexander Novikov, Matej Balog, M Pawan Kumar, Emilien

Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming
Wang, Omar Fawzi, et al. Mathematical discoveries from
program search with large language models. Nature, pages
1–3, 2023. 3

[25] Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi
Grau-Moya, R. Csordás, Mehdi Abbana Bennani, Shane
Legg, and Joel Veness. Randomized positional encod-
ings boost length generalization of transformers. ArXiv,
abs/2305.16843, 2023. 3, 4

[26] Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Can-
cedda, and Thomas Scialom. Toolformer: Language mod-
els can teach themselves to use tools. arXiv preprint
arXiv:2302.04761, 2023. 3

[27] Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee,
Yuanzhi Li, and Yi Zhang. Positional description matters for
transformers arithmetic. arXiv preprint arXiv:2311.14737,
2023. 3

[28] Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang
Luong. Solving olympiad geometry without human demon-
strations. Nature, 625(7995):476–482, 2024. 3

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 4

[30] Petar Veličković. Everything is connected: Graph neural net-
works. Current Opinion in Structural Biology, 79:102538,
2023. 1

[31] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell,
and Charles Blundell. Neural execution of graph algorithms.
arXiv preprint arXiv:1910.10593, 2019. 2, 4

[32] Petar Veličković, Matko Bošnjak, Thomas Kipf, Alexander
Lerchner, Raia Hadsell, Razvan Pascanu, and Charles Blun-
dell. Reasoning-modulated representations. In Learning on
Graphs Conference, pages 50–1. PMLR, 2022. 2

[33] Petar Veličković and Charles Blundell. Neural algorithmic
reasoning. Patterns, 2, 2021. 1

[34] Petar Veličković, Adrià Puigdomènech Badia, David Bud-
den, Razvan Pascanu, Andrea Banino, Mikhail Dashevskiy,
Raia Hadsell, and Charles Blundell. The clrs algorithmic rea-
soning benchmark. In International Conference on Machine
Learning, 2022. 1, 2, 4, 5, 6

[35] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret
Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,
Denny Zhou, Donald Metzler, et al. Emergent abilities of
large language models. arXiv preprint arXiv:2206.07682,
2022. 7

[36] Louis-Pascal Xhonneux, Andreea-Ioana Deac, Petar
Veličković, and Jian Tang. How to transfer algorithmic
reasoning knowledge to learn new algorithms? Advances in
Neural Information Processing Systems, 34:19500–19512,
2021. 2

[37] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-
ichi Kawarabayashi, and Stefanie Jegelka. How neural net-
works extrapolate: From feedforward to graph neural net-
works. arXiv preprint arXiv:2009.11848, 2020. 2

[38] Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron
Courville, Behnam Neyshabur, and Hanie Sedghi. Teaching



algorithmic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022. 3

[39] Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Josh Susskind, Samy Bengio, and Preetum
Nakkiran. What algorithms can transformers learn? a study
in length generalization. arXiv preprint arXiv:2310.16028,
2023. 7

6. Effect of Randomized Positional Encoding
Using randomized positional encoding has benefitted both
our model and the baseline. In particular, combining them
with NAR hiddens led to improvements OOD, most preva-
lently in the interpoloation regime (at length 10), but also,
to some extent, in the extrapoloation regime (at length 14).
One result we found interesting, was that before instat-
ing randomized positional encoding, the OOD performance
of our hybrid models was limited (in fact thresholded) by
the performance of the base LLM. Concretely, if the base
LLM achieved near-zero performance, the hybrid architec-
ture would fatally share the same fate. We can see that this is
no longer the case: if the base LLM uses randomized posi-
tional encoding, even if its performance is near-zero, that of
the hybrid architecture can still be reasonably good. This is
illustrated in the second column of the figure 4, for example
on the Graham Scan, Jarvis March, MST Prim algorithms.

7. Parse Scores



Figure 6. Parse Score: We can see that for a few algorithms, the TransNAR architecture falls behind the baseline in the extrapolation
regime likely due to an unsufficient capacity of the cross-attention in charge of decoding from the NAR’s outputs.


	. Introduction
	. Related work
	. TransNAR: Augmenting Transformers with a pre-trained GNN-based NAR
	. Experiments
	. Results
	. Limitations

	. Conclusions
	. Effect of Randomized Positional Encoding
	. Parse Scores

